CHEMISTRY

Q. 1. Which one of the following is the correct statement?
 i. Chlorides of both beryllium and aluminium have bridged chloride structures in solid phase. ii. B ₂H₆.2NH₃ is known as 'inorganic benzene'. iii. Boric acid is a protonic acid. iv. Beryllium exhibits coordination number of six.
Sol: Becl ₂ and Alcl ₃ both have bridged structure in solid phase. B ₃ N ₃ H ₆ is known as inorganic benzene. Boric acid is Lewis acid. Beryllium exhibits coordination number of 4
Q. 2.
i.
ii.
iii.
iv.
Sol:
Q. 3. The correct decreasing order of priority for the functional groups of organic compounds in the IUPAC system of nomenclature is
i.
ii.
iii.
iv.
Sol: The correct decreasing order of priority for the functional group of organic compounds in the IUPAC system of

nomenclature is:

	a weak acid, HA is 4.80. The pK₀ of a weak base, BOH, is 4.78. The pH of an aqueous solution o
the corresponding	g salt, BA, will be
i. 7.01	
ii. 9.22	
iii. 9.58	
iv. 4.79	
Sol:	
Q. 5. The hydroca	arbon which can react with sodium in liquid ammonia is
i.	
ii.	
iii.	
iv.	
Sol:	
Q. 6.	
: 0.000	
i0.339 V ii0.26 V	
ii0.26 V iii. 0.26 V	
111. U.ZU V	

Q. 7. Amount of oxalic acid present in a solution can be determined by its titration with KMnQsolution in the presence of H₂SO₄. The titration gives unsatisfactory result when carried out in the presence of HCl, because HCl

- i. reduces permanganate to Mn²⁺.
- ii. oxidises oxalic acid to carbon dioxide and water.
- iii. gets oxidised by oxalic acid to chlorine.
- iv. furnishes H^+ ions in addition to those from oxalic acid.

Sol: KMnO₄can oxidise HCl along with oxalic acid into Cb and itself gets reduced to Mn²⁺.

Q. 8. Among the following substituted silanes the one which will give rise to cross linked silicone polymer on hydrolysis is

i. R ₂SiCl₂ ii. R ₃SiCl iii. R ₄Si

iv. RSiCl 3

Sol:

Correct answer is (4)
Q. 9. Oxidising power of chlorine in aqueous solution can be determined by the parameters indicated below:
The energy involved in the conversion of
i. −850 kJ mol ⁻¹ ii. +120 kJ mol ⁻¹ iii. +152 kJ mol ⁻¹ iv. −610 kJ mol ⁻¹

Q. 10. Which of the following factors is of no significance for roasting sulphide ores to the oxides and not subjecting the sulphide ores to carbon reduction directly?
i. Metal sulphides are less stable than the corresponding oxides.ii. CO 2is more volatile than CS2.
iii. Metal sulphides are thermodynamically more stable than CS ₂ . iv. CO 2is thermodynamically more stable than CS ₂ .
Sol:
Hence, CO ₂ is more stable than CS ₂ while Ms are more stable than MO.
Q. 11. Four species are listed below:
i.
ii.
iii.
iv.
Which one of the following is the correct sequence of their acid strength?
$(1) \ (i) < (iii) < (ii) < (iv) \ (2) \ (iii) < (i) < (iv) < (ii) \ (3) \ (iv) < (ii) < (iii) < (i) \ (4) \ (ii) < (iii) < (iv) < (iv)$
Sol: The increasing order of acidic strength is

Q. 12. Which one of the following constitutes a group of the isoelectronic species?

i.	
ii.	
iii.	
iv.	
Sol: Iso	pelectronic species have same number of electrons
Q. 13. F	Phenol, when it first reacts with concentrated sulphuric acid and then with concentrated nitric acid, gives
	nitrophenol trobenzene
	4,6-trinitrobenzene
	nitrophenol
Sol:	
As tam	perature is not mentioned, 0- mitrophenol is the only stable product.
A3, tem	peracure is not mentioned, o- microphenor is the only stable product.
	The ionization enthalpy of hydrogen atom is 1.312×10^6 J mol ⁻¹ . The energy required to excite the electron in
trie ator	m from $n = 1$ to $n = 2$ is
i.	
ii.	
iii	
iii.	
iii. iv.	

Q. 15. The organic chloro compound, which shows complete stereochemical inversion during a \$\(2 \) reaction, is
: (011) 01101
i. (CH 3)2CHCI ii. CH 3CI
iii. (C 2H ₅) ₂ CHCl
iv. (CH 3)3CCI
Sol: Primary halides show inversion during S _N 2 reaction more than secondary while secondary show more than
tertiary.
Q. 16. Toluene is nitrated and the resulting product is reduced with tin and hydrochloric acid. The product so obtained
is diazotized and then heated with cuprous bromide. The reaction mixture so formed contains
i. mixture of o-; and p-bromoanilines
ii. mixture of o- and m-bromotoluenes
iii. mixture of o- and p-bromotoluenes
iv. mixture of o- and p-dibromobenzenes
Sol:

Q. 17. In the following sequence of reactions, the alkene affords the compound 'B'

The com	pound B is
i. CH ii. CH iii. CH iv. CH	3CHO 3CH2CHO
Sol:	
Correct	t answer is (2)
Conco	answer is (2)
Q. 18. W	hich one of the following pairs of species have the same bond order?
i.	
ii. iii.	
iv.	
	species which have the same number of total electrons will have the same bond order. NO^+ each have 14 electrons and they will have same bond order.
Q. 19. At mixture s	180° C, the vapour pressure of pure liquid 'A' is 520 mm Hg and that of pure liquid 'B' is 1000 mm Hg. If a solution of 'A' and 'B' boils at 80° C and 1 atm pressure, the amount of 'A' in the mixture is (1 atm = 760 mm)
	48 mol percent
	50 mol percent
	52 mol percent 34 mol percent

Sol:

Q. 20. For a reaction expression	, rate of disappearance of 'A' is related to the rate of appearance of 'B' by the	
expression		
i.		
ii.		
iii.		
iv.		
Sol:		
Q. 21. The equilibrium constants in the ratio of 1 : 9. If the degree	for the reactions respectively are of dissociation of X and Z be equal then the ratio of total pressures at these equilibrium.	·ia
is		
i. 1:3		
ii. 1 : 9 iii. 1 : 36		

iv. 1:1

Q. 22. In context with the industrial preparation of hydrogen from water gas (CO + H), which of the following correct statement? i. H 2 is removed through occlusion with Pd. ii. CO is oxidised to CO: with steam in the presence of a catalyst followed by absorption of CQ:n alka iii. CO and Hzare fractionally separated using differences in their densities. iv. CO is removed by absorption in aqueous CtzCtzsolution. Sol:	SOI:	
i. H 2 is removed through occlusion with Pd. ii. CO is oxidised to CO2 with steam in the presence of a catalyst followed by absorption of CQin alka iii. CO and H2are fractionally separated using differences in their densities. iv. CO is removed by absorption in aqueous Cu2Cl2solution.		
i. H 2 is removed through occlusion with Pd. ii. CO is oxidised to CO2 with steam in the presence of a catalyst followed by absorption of CQin alka iii. CO and H2are fractionally separated using differences in their densities. iv. CO is removed by absorption in aqueous Cu2Cl2solution.		
i. H 2 is removed through occlusion with Pd. ii. CO is oxidised to CO2 with steam in the presence of a catalyst followed by absorption of CQin alka iii. CO and H2are fractionally separated using differences in their densities. iv. CO is removed by absorption in aqueous Cu2Cl2solution.		
i. H 2 is removed through occlusion with Pd. ii. CO is oxidised to CO2 with steam in the presence of a catalyst followed by absorption of CQin alka iii. CO and H2are fractionally separated using differences in their densities. iv. CO is removed by absorption in aqueous Cu2Cl2solution.		
i. H 2 is removed through occlusion with Pd. ii. CO is oxidised to CO2 with steam in the presence of a catalyst followed by absorption of CQin alka iii. CO and H2are fractionally separated using differences in their densities. iv. CO is removed by absorption in aqueous Cu2Cl2solution.		
i. H 2 is removed through occlusion with Pd. ii. CO is oxidised to CO2 with steam in the presence of a catalyst followed by absorption of CQin alka iii. CO and H2are fractionally separated using differences in their densities. iv. CO is removed by absorption in aqueous Cu2Cl2solution.		
i. H 2 is removed through occlusion with Pd. ii. CO is oxidised to CO2 with steam in the presence of a catalyst followed by absorption of CQin alka iii. CO and H2are fractionally separated using differences in their densities. iv. CO is removed by absorption in aqueous Cu2Cl2solution.		
i. H 2 is removed through occlusion with Pd. ii. CO is oxidised to CO2 with steam in the presence of a catalyst followed by absorption of CQin alka iii. CO and H2are fractionally separated using differences in their densities. iv. CO is removed by absorption in aqueous Cu2Cl2solution.		
i. H 2 is removed through occlusion with Pd. ii. CO is oxidised to CO2 with steam in the presence of a catalyst followed by absorption of CQin alka iii. CO and H2are fractionally separated using differences in their densities. iv. CO is removed by absorption in aqueous Cu2Cl2solution.		
i. H 2 is removed through occlusion with Pd. ii. CO is oxidised to CO2 with steam in the presence of a catalyst followed by absorption of CQin alka iii. CO and H2are fractionally separated using differences in their densities. iv. CO is removed by absorption in aqueous Cu2Cl2solution.		
i. H 2 is removed through occlusion with Pd. ii. CO is oxidised to CO2 with steam in the presence of a catalyst followed by absorption of CQin alka iii. CO and H2are fractionally separated using differences in their densities. iv. CO is removed by absorption in aqueous Cu2Cl2solution.		
i. H 2 is removed through occlusion with Pd. ii. CO is oxidised to CO2 with steam in the presence of a catalyst followed by absorption of CQin alka iii. CO and H2are fractionally separated using differences in their densities. iv. CO is removed by absorption in aqueous Cu2Cl2solution.		
i. H 2 is removed through occlusion with Pd. ii. CO is oxidised to CO2 with steam in the presence of a catalyst followed by absorption of CQin alka iii. CO and H2are fractionally separated using differences in their densities. iv. CO is removed by absorption in aqueous Cu2Cl2solution.		
i. H 2 is removed through occlusion with Pd. ii. CO is oxidised to CO2 with steam in the presence of a catalyst followed by absorption of CQin alka iii. CO and H2are fractionally separated using differences in their densities. iv. CO is removed by absorption in aqueous Cu2Cl2solution.		
i. H 2 is removed through occlusion with Pd. ii. CO is oxidised to CO2 with steam in the presence of a catalyst followed by absorption of CQin alka iii. CO and H2are fractionally separated using differences in their densities. iv. CO is removed by absorption in aqueous Cu2Cl2solution.		
i. H 2 is removed through occlusion with Pd. ii. CO is oxidised to CO2 with steam in the presence of a catalyst followed by absorption of CQin alka iii. CO and H2are fractionally separated using differences in their densities. iv. CO is removed by absorption in aqueous Cu2Cl2solution.		
 i. H 2 is removed through occlusion with Pd. ii. CO is oxidised to CO2 with steam in the presence of a catalyst followed by absorption of CQin alka iii. CO and H2 are fractionally separated using differences in their densities. iv. CO is removed by absorption in aqueous Cu2Cl2 solution. 	_	
 ii. CO is oxidised to CO₂ with steam in the presence of a catalyst followed by absorption of CO₂ in alka iii. CO and H₂ are fractionally separated using differences in their densities. iv. CO is removed by absorption in aqueous CU₂Cl₂ solution. 		
iii. CO and H₂are fractionally separated using differences in their densities. iv. CO is removed by absorption in aqueous Cu₂Cl₂solution.	correct	statement?
	correct i. H	statement? 2 is removed through occlusion with Pd.
Sol:	correct i. H ii.	statement? 2 is removed through occlusion with Pd. CO is oxidised to CO ₂ with steam in the presence of a catalyst followed by absorption of CO ₂ in alkali CO and H ₂ are fractionally separated using differences in their densities.
	i. H ii. iii.	statement? 2 is removed through occlusion with Pd. CO is oxidised to CO ₂ with steam in the presence of a catalyst followed by absorption of CO ₂ in alkali CO and H ₂ are fractionally separated using differences in their densities.
	i. H ii. iii. iv.	statement? 2 is removed through occlusion with Pd. CO is oxidised to CO ₂ with steam in the presence of a catalyst followed by absorption of CO ₂ in alkali CO and H ₂ are fractionally separated using differences in their densities.
	i. H ii. iii. iv.	statement? 2 is removed through occlusion with Pd. CO is oxidised to CO ₂ with steam in the presence of a catalyst followed by absorption of CO ₂ in alkali CO and H ₂ are fractionally separated using differences in their densities.
	i. H ii. iii. iv.	statement? 2 is removed through occlusion with Pd. CO is oxidised to CO ₂ with steam in the presence of a catalyst followed by absorption of CO ₂ in alkali CO and H ₂ are fractionally separated using differences in their densities.
	i. H ii. iii. iv.	statement? 2 is removed through occlusion with Pd. CO is oxidised to CO ₂ with steam in the presence of a catalyst followed by absorption of CO ₂ in alkali CO and H ₂ are fractionally separated using differences in their densities.
	i. H ii. iii. iv.	statement? 2 is removed through occlusion with Pd. CO is oxidised to CO ₂ with steam in the presence of a catalyst followed by absorption of CO ₂ in alkali CO and H ₂ are fractionally separated using differences in their densities.
	i. H ii. iii. iv.	z is removed through occlusion with Pd. CO is oxidised to CO ₂ with steam in the presence of a catalyst followed by absorption of CQ in alkali. CO and H ₂ are fractionally separated using differences in their densities.